The Wadge Hierarchy on 0-dimensional Polish space

Joint work with R. Carroy and L. Motto Ros Salvatore Scamperti, University of Turin

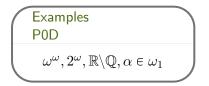
Winter School in Abstract Analysis 2022 section Set Theory & Topology Hejnice, February 4th 2022

Let Z be a topological space. Given $A, B \subseteq Z$ we say that A Wadge reduces to B (briefly $A \leq_W B$) if there exists a continuous $f: Z \to Z$ such that $f^{-1}(B) = A$.

Our class of spaces: zero-dimensional Polish spaces (P0D), that is zero-dimensional, separable and completely metrizable spaces.

Let Z be a topological space. Given $A, B \subseteq Z$ we say that A Wadge reduces to B (briefly $A \leq_W B$) if there exists a continuous $f: Z \to Z$ such that $f^{-1}(B) = A$.

Our class of spaces: zero-dimensional Polish spaces (P0D), that is zero-dimensional, separable and completely metrizable spaces.



$$\begin{array}{c} {\color{red} \mathsf{Examples}} \\ {\color{red} \mathsf{Not}} \ \mathsf{P0D} \\ \\ {\color{red} \mathbb{R}}, \ \ell^p, \ \mathbb{Q} \end{array} \end{array}$$

 $(\mathsf{Wadge}) \quad A \leqslant_{\mathrm{W}} B \Leftrightarrow \mathrm{II}$ has a winning strategy in $\mathrm{G}(A,B)$

Wadge Lemma

(AD) Let $A, B \subseteq \omega^{\omega}$ then $A \leq_W B$ or $\omega^{\omega} \setminus B \leq_W A$.

where p is for "pass", i.e. II can skip his turn.

(Wadge) $A \leq_W B \Leftrightarrow II$ has a winning strategy in G(A, B)

Wadge Lemma

(AD) Let $A, B \subseteq \omega^{\omega}$ then $A \leq_{W} B$ or $\omega^{\omega} \setminus B \leq_{W} A$.

Winning condition for II:

 $a \in A$ if and only if $b \in B$.

(Wadge) $A \leq_W B \Leftrightarrow II$ has a winning strategy in G(A, B)

Wadge Lemma

(AD) Let $A, B \subseteq \omega^{\omega}$ then $A \leq_{\mathrm{W}} B$ or $\omega^{\omega} \backslash B \leq_{\mathrm{W}} A$.

Winning condition for II:

 $a \in A$ if and only if $b \in B$.

(Wadge) $A \leq_W B \Leftrightarrow II$ has a winning strategy in G(A, B)

Wadge Lemma

 ${
m (AD)}$ Let $A,B\subseteq\omega^{\omega}$ then $A\leqslant_{
m W}B$ or $\omega^{\omega}ackslash B\leqslant_{
m W}A.$

Winning condition for II:

 $a \in A$ if and only if $b \in B$.

(Wadge) $A \leq_W B \Leftrightarrow II$ has a winning strategy in G(A, B)

Wadge Lemma

(AD) Let
$$A, B \subseteq \omega^{\omega}$$
 then $A \leq_W B$ or $\omega^{\omega} \setminus B \leq_W A$.

Theorem (Martin-Monk)

(AD) $(\mathcal{P}(\omega^\omega),\leqslant_W)$ is a well-founded quasi-order, called the Wadge quasi-order.

Definition

A subset $A \subseteq \omega^{\omega}$ is **selfdual** if $A \leq_{W} \omega^{\omega} \setminus A$, otherwise A is **non selfdual**. Moreover, if we consider (the Wadge class) $[A] = \{B \in \mathcal{P}(\omega^{\omega}) \mid A \leq_{W} B, B \leq_{W} A\}$, [A] is selfdual if so is A.

Consider the **coarse class**, $[A] \cup [\omega^{\omega} \setminus A]$, the relation on them induced by the Wadge reduction is a well-order. We define the rank of a coarse class (Wadge class), an ordinal that uniquely identifies the coarse class.

Theorem (Martin-Monk)

(AD) $(\mathcal{P}(\omega^{\omega}), \leqslant_{W})$ is a well-founded quasi-order, called the Wadge quasi-order.

Definition

A subset $A \subseteq \omega^{\omega}$ is **selfdual** if $A \leq_W \omega^{\omega} \setminus A$, otherwise A is **non selfdual**. Moreover, if we consider (the Wadge class) $[A] = \{B \in \mathcal{P}(\omega^{\omega}) \mid A \leq_W B, B \leq_W A\}$, [A] is selfdual if so is A.

Consider the **coarse class**, $[A] \cup [\omega^{\omega} \setminus A]$, the relation on them induced by the Wadge reduction is a well-order. We define the rank of a coarse class (Wadge class), an ordinal that uniquely identifies the coarse class.

Theorem (Martin-Monk)

(AD) $(\mathcal{P}(\omega^\omega),\leqslant_W)$ is a well-founded quasi-order, called the Wadge quasi-order.

Definition

A subset $A \subseteq \omega^{\omega}$ is **selfdual** if $A \leq_{W} \omega^{\omega} \setminus A$, otherwise A is **non selfdual**. Moreover, if we consider (the Wadge class) $[A] = \{B \in \mathcal{P}(\omega^{\omega}) \mid A \leq_{W} B, B \leq_{W} A\}$, [A] is selfdual if so is A.

Consider the **coarse class**, $[A] \cup [\omega^{\omega} \setminus A]$, the relation on them induced by the Wadge reduction is a well-order. We define the rank of a coarse class (Wadge class), an ordinal that uniquely identifies the coarse class.

Let α be the rank of a coarse class, we say

- α ∈ SD_ω^ω, if the αth coarse class coming from a selfdual subset A;
- $\alpha \in \text{NSD}_{\omega^{\omega}}$, if the α th coarse class coming from a non selfdual subset A.

This was due to Wadge (probably), although not stated like this. Alternating duality: If $\alpha < \Theta_{\omega^{\omega}}$, $\alpha \in SD_{\omega^{\omega}}$ if and only if $\alpha + 1 \in NSD_{\omega^{\omega}}$.

> **Goal:** describe the partial-order of the Wadge classes on zero-dimensional Polish spaces up to isomorphism!

Schlicht showed that the structure of Wadge degrees on any non zero-dimensional metric space must contain infinite antichains.

Let α be the rank of a coarse class, we say

- $\alpha \in SD_{\omega^{\omega}}$, if the α th coarse class coming from a selfdual subset A;
- $\alpha \in \text{NSD}_{\omega^{\omega}}$, if the α th coarse class coming from a non selfdual subset A.

This was due to Wadge (probably), although not stated like this. Alternating duality: If $\alpha < \Theta_{\omega^{\omega}}$, $\alpha \in SD_{\omega^{\omega}}$ if and only if $\alpha + 1 \in NSD_{\omega^{\omega}}$.

> **Goal:** describe the partial-order of the Wadge classes on zero-dimensional Polish spaces up to isomorphism!

Schlicht showed that the structure of Wadge degrees on any non zero-dimensional metric space must contain infinite antichains.

Let α be the rank of a coarse class, we say

- $\alpha \in SD_{\omega^{\omega}}$, if the α th coarse class coming from a selfdual subset A;
- $\alpha \in \text{NSD}_{\omega^{\omega}}$, if the α th coarse class coming from a non selfdual subset A.

This was due to Wadge (probably), although not stated like this. Alternating duality: If $\alpha < \Theta_{\omega^{\omega}}$, $\alpha \in SD_{\omega^{\omega}}$ if and only if $\alpha + 1 \in NSD_{\omega^{\omega}}$.

> **Goal:** describe the partial-order of the Wadge classes on zero-dimensional Polish spaces up to isomorphism!

Schlicht showed that the structure of Wadge degrees on any non zero-dimensional metric space must contain infinite antichains.

On ω^{ω} or 2^{ω} 1) Well-foundedness 2) SLO_W 3) Alternating duality 4) Study of limit with

- 5) Study of limit with uncountable cofinality

countable cofinality

6) Length of the hierarchy

General P0D Z

On ω^{ω} or 2^{ω}	General P0D Z
1) Well-foundedness	1) 🗸
2) SLO_W	2) 🗸
3) Alternating duality	3) ?
4) Study of limit with countable cofinality	4) ?
5) Study of limit with uncountable cofinality	5) ?
6) Length of the hierarchy	6) ?

Let Z be a zero-dimensional Polish space.

Alternating duality: if $\alpha < \Theta_Z$, $\alpha \in SD_Z$ if and only if $\alpha + 1 \in NSD_Z$.

Theorem (R. Carroy, L. Motto Ros, S.)

Let Z be zero-dimensional Polish space and let $\alpha < \Theta_Z$ be in NSD_Z . Then $\alpha + 1 \in SD_Z$.

Remark

The proof of the theorem is different depending on whether Z is countable or not. If Z is uncountable this can be obtained as consequence of the description of the Wadge Hierarchy on the Baire space via tools in Carroy-Medini-Müller(2022), while in countable case one needs a constructive proof.

Let ${\boldsymbol{Z}}$ be a zero-dimensional Polish space.

Alternating duality: if $\alpha < \Theta_Z$, $\alpha \in SD_Z$ if and only if $\alpha + 1 \in NSD_Z$.

Theorem (R. Carroy, L. Motto Ros, S.)

Let Z be zero-dimensional Polish space and let $\alpha < \Theta_Z$ be in $NSD_Z.$ Then $\alpha+1 \in SD_Z.$

Remark

The proof of the theorem is different depending on whether Z is countable or not. If Z is uncountable this can be obtained as consequence of the description of the Wadge Hierarchy on the Baire space via tools in Carroy-Medini-Müller(2022), while in countable case one needs a constructive proof.

Theorem (Wadge, Carroy-Medini-Müller)

Let Z be a zero-dimensional Polish space and $A \subseteq Z$. The set A is selfdual if and only if there exists a pairwise disjoint partition $(U_n)_{n\in\omega}$ of Z in clopen subsets such that for each $n \in \omega$ there exists $A_n \subseteq Z$ non selfdual subset satisfying

$$A_n <_{\mathrm{W}} A$$
 and $\bigcup_{n \in \omega} A_n \cap U_n = A.$

Corollary

Let Z be a zero-dimensional Polish space and $\alpha < \Theta_Z$ a limit ordinal of countable cofinality. If $\alpha \in \mathrm{SD}_Z$ then Z is not compact.

Theorem (Wadge, Carroy-Medini-Müller)

Let Z be a zero-dimensional Polish space and $A \subseteq Z$. The set A is selfdual if and only if there exists a pairwise disjoint partition $(U_n)_{n\in\omega}$ of Z in clopen subsets such that for each $n \in \omega$ there exists $A_n \subseteq Z$ non selfdual subset satisfying

$$A_n <_{\mathrm{W}} A$$
 and $\bigcup_{n \in \omega} A_n \cap U_n = A.$

Corollary

Let Z be a zero-dimensional Polish space and $\alpha < \Theta_Z$ a limit ordinal of countable cofinality. If $\alpha \in \mathrm{SD}_Z$ then Z is not compact.

Proposition

Let Z be a zero-dimensional Polish space, let α, β be two coarse classes. If $\alpha < \beta$ and $\alpha, \beta \in SD_Z$ then there exists $\rho \in NSD_Z$ such that $\alpha < \rho < \beta$.

Alternating duality Theorem (Wadge, Carroy-Motto Ros-S.)

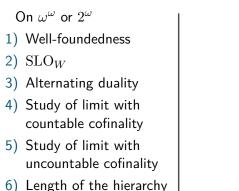
Let Z be a zero-dimensional Polish space, and let $\alpha < \Theta_Z$ then $\alpha \in SD_Z$ if and only if $\alpha + 1 \in NSD_Z$.

Proposition

Let Z be a zero-dimensional Polish space, let α, β be two coarse classes. If $\alpha < \beta$ and $\alpha, \beta \in SD_Z$ then there exists $\rho \in NSD_Z$ such that $\alpha < \rho < \beta$.

Alternating duality Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be a zero-dimensional Polish space, and let $\alpha < \Theta_Z$ then $\alpha \in SD_Z$ if and only if $\alpha + 1 \in NSD_Z$.



General P0D Z1) 🗸 2) 🗸 3) 🗸 4) ? 5) ? 6) ?

Proposition

Let Z be a zero-dimensional Polish space and $\alpha < \Theta_Z$. If α is a limit ordinal with $cof(\alpha) = \omega_1$ then $\alpha \in NSD_Z$.

Remark

The case
$$Z = 2^{\omega}, \omega^{\omega}$$
 are due to Wadge.

Let ${\cal Z}$ be a topological space then we define the perfect kernel of ${\cal Z}$ as

 $\ker_p(Z) = \{x \in Z \mid x \text{ is an accumulation points of } Z\}$ where $x \in Z$ is an accumulation point if and only if each neighborhood U of x is uncountable.

Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be an uncountable zero-dimensional Polish space and let α be a limit ordinal with $cof(\alpha) = \omega$. If $ker_p(Z)$ is not compact then $\alpha \in SD_Z$.

What if $\ker_p(Z)$ is compact?

Let ${\cal Z}$ be a topological space then we define the perfect kernel of ${\cal Z}$ as

 $\ker_p(Z) = \{x \in Z \mid x \text{ is an accumulation points of } Z\}$ where $x \in Z$ is an accumulation point if and only if each neighborhood U of x is uncountable.

Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be an uncountable zero-dimensional Polish space and let α be a limit ordinal with $cof(\alpha) = \omega$. If $ker_p(Z)$ is not compact then $\alpha \in SD_Z$.

What if $\ker_p(Z)$ is compact?

Let ${\cal Z}$ be a topological space then we define the perfect kernel of ${\cal Z}$ as

 $\ker_p(Z) = \{x \in Z \mid x \text{ is an accumulation points of } Z\}$ where $x \in Z$ is an accumulation point if and only if each neighborhood U of x is uncountable.

Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be an uncountable zero-dimensional Polish space and let α be a limit ordinal with $cof(\alpha) = \omega$. If $ker_p(Z)$ is not compact then $\alpha \in SD_Z$.

What if $\ker_p(Z)$ is compact?

Recall that the Cantor-Bendixon derivatives on a topological space Z are defined as follows: $\operatorname{CB}_0(Z) = Z$, $\operatorname{CB}_{\gamma+1}(Z) = \operatorname{CB}_{\gamma}(Z) \setminus \{x \in \operatorname{CB}_{\gamma}(Z) \mid x \text{ is isolated points in } \operatorname{CB}_{\gamma}(Z)\},$ $\operatorname{CB}_{\lambda}(Z) = \bigcap_{\mu < \lambda} \operatorname{CB}_{\mu}(Z)$ when λ is a limit ordinal.

Definition

Let $\operatorname{Comp}(Z) = \min\{\gamma \in \omega_1 \mid \operatorname{CB}_{\gamma}(Z) \text{ is compact}\}$, where $\operatorname{CB}_{\gamma}(Z)$ is the Cantor-Bendixon derivatives.

Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be a zero-dimensional Polish space such that $\ker_p(Z)$ compact, and let $\alpha < \Theta_Z$. If α is a limit ordinal with $\operatorname{cof}(\alpha) = \omega$ then

- if $\alpha < \operatorname{Comp}(Z)$ then $\alpha \in \operatorname{SD}_Z$;
- if $\alpha > \operatorname{Comp}(Z)$ then $\alpha \in \operatorname{NSD}_Z$.

Recall that the Cantor-Bendixon derivatives on a topological space Z are defined as follows: $\operatorname{CB}_0(Z) = Z$, $\operatorname{CB}_{\gamma+1}(Z) = \operatorname{CB}_{\gamma}(Z) \setminus \{x \in \operatorname{CB}_{\gamma}(Z) \mid x \text{ is isolated points in } \operatorname{CB}_{\gamma}(Z)\},$ $\operatorname{CB}_{\lambda}(Z) = \bigcap_{\mu < \lambda} \operatorname{CB}_{\mu}(Z)$ when λ is a limit ordinal.

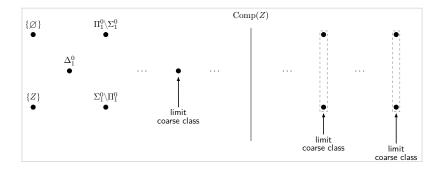
Definition

Let $\operatorname{Comp}(Z) = \min\{\gamma \in \omega_1 \mid \operatorname{CB}_{\gamma}(Z) \text{ is compact}\}$, where $\operatorname{CB}_{\gamma}(Z)$ is the Cantor-Bendixon derivatives.

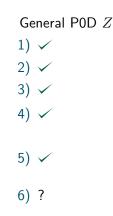
Theorem (Wadge, Carroy-Motto Ros-S.)

Let Z be a zero-dimensional Polish space such that $\ker_p(Z)$ compact, and let $\alpha < \Theta_Z$. If α is a limit ordinal with $\operatorname{cof}(\alpha) = \omega$ then

- if $\alpha < \operatorname{Comp}(Z)$ then $\alpha \in \operatorname{SD}_Z$;
- if $\alpha > \operatorname{Comp}(Z)$ then $\alpha \in \operatorname{NSD}_Z$.



- On ω^ω or 2^ω
- 1) Well-foundedness
- 2) SLO_W
- 3) Alternating duality
- 4) Study of limit with countable cofinality
- 5) Study of limit with uncountable cofinality
- 6) Length of the hierarchy



Length of the Wadge hierarchy

Z is uncountable $\rightsquigarrow \Theta$.

Z is countable and CB(Z) is limit $\sim CB(Z)$.

If Z is countable and $\operatorname{CB}(Z) = \lambda + n + 1$

$\operatorname{Comp} Z{<}\lambda$	$\lambda + 2n + 2$	$\lambda + 2n + 3$
$\operatorname{Comp} Z{>}\lambda$	$\lambda + 2n + 1$	$\lambda + 2n + 2$
	$ \operatorname{CB}_{\lambda+n}(Z) =1$	$ \operatorname{CB}_{\lambda+n}(Z) > 1$

Thank you!